

Ferdinand Schad KG Steigstraße 25-27 D-78600 Kolbingen Teléfono +49 (0) 74 63 - 980 - 0 Fax +49 (0) 74 63 - 980 - 200 info@schako.de schako.com

Contenido

Descripción	
Fabricación	3
Ejecución	
Accesorios	3
Ejecuciones y dimensiones	
Dimensiones	
Accesorios - Dimensiones	
Datos técnicos	
Pérdida de carga y potencia sonora	9
Sección libre en m ²	
Esquema eléctrico	10
Leyenda	
Textos de especificación	10

Descripción

Rejilla de toma de aire exterior y retorno con lamas fijas y vierteaguas con rejilla de tela metálica montada detrás. Normalmente lleva agujeros de fijación perforados.

Bajo pedido todas las ejecuciones están disponibles con marco de montaje de perfil angular de acero 30/30/3 imprimado.

ALAS con cinta de calefacción autorreguladora

Una mejor protección contra la formación de hielo es el montaje de una cinta de calefacción autorreguladora. Esta cinta de calefacción adapta su potencia calorífica en cualquier posición a su entorno. Está disponible en cualquier longitud con una potencia nominal de máx. 36 W/m. Utilizable hasta -8 °C y con una humedad relativa de 80%

ALAS con cinta de calefacción autorreguladora "Top"

Una mejor protección contra la formación de hielo es el montaje de una cinta de calefacción autorreguladora. Esta cinta de calefacción adapta su potencia calorífica en cualquier posición a su entorno. Está disponible en cualquier longitud con una potencia nominal de máx. 64 W/m. Utilizable hasta -15 °C y con una humedad relativa de 80%

Cinta de calefacción autorreguladora

El elemento de calentamiento de la cinta de calefacción consiste en un trenzado de plástico semiconductor en el cual están incorporados dos conductores de cobre multifilares. Si la cinta de calefacción entra en contacto con el hielo, la corriente circula a través del elemento de calentamiento generando calor. En cuanto algunas partes de la cinta de calefacción se secan tras decongelarse, la temperatura sube en estos lugares y la resistencia del elemento de calentamiento aumenta. La corriente y la potencia calorífica se reducen a un mínimo.

Fabricación

Lamas

- Chapa de acero galvanizado
- Aluminio natural
- Aluminio anodizado en color natural (E6/EV1)
- Cobre

Rejilla de tela metálica

- Acero galvanizado
- Acero inoxidable 1.4301 (V2A)

Marco

- Chapa de acero galvanizado
- Aluminio natural
- Aluminio anodizado en color natural (E6/EV1)
- Cobre

Ejecución

ALAS - Ejecución en chapa de acero ALAS-Alu - Ejecución en aluminio

ALAS-Cu - Ejecución en cobre

Accesorios

Marco de montaje

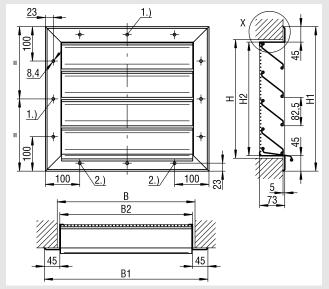
- Perfil angular de acero imprimado y perfilado (no perfilado si se suministra de antemano)

Cinta de calefacción

- Plástico
- Utilizable hasta -8 °C y con una humedad relativa de 80%

Cinta de calefacción "Top"

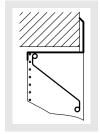
- Plástico
- Utilizable hasta -15 °C y con una humedad relativa de 80%


Atención:

Para limpiar los modelos de acero inoxidable deberán utilizarse solamente productos de limpieza adecuados.

08/01 - 3 Fecha: 05.03.2021

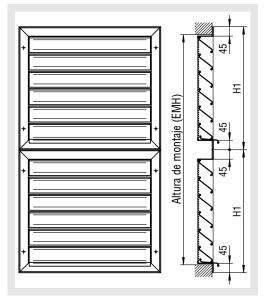
Ejecuciones y dimensiones Dimensiones


Tamaños disponibles

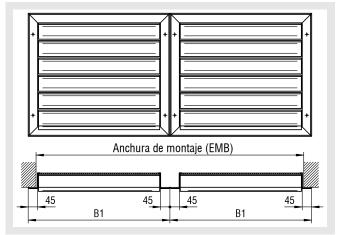
	_	_		_	_
В	B1	B2	Н	H1	H2
400	475	389	345	420	338
600	675	589	510	585	503
800	875	789	675	750	668
1000	1075	989	840	915	833
1200	1275	1189	1005	1080	998
1400	1475	1389	1170	1245	1163
1600	1675	1589	1335	1410	1328
1800	1875	1789	1500	1575	1493
2000	2075	1989	1665	1740	1658
			1830	1905	1823
			1995	2070	1988

Todas las combinaciones de anchura (B) y altura (H) son posibles.

- 1.) 3 agujeros de fijación por lado a partir de una altura o anchura de ≥ 1600
- 2.) Perforaciones adicionales a partir de una anchura de $\geq 900\,$


Detaile X ALAS / ALAS-Cu

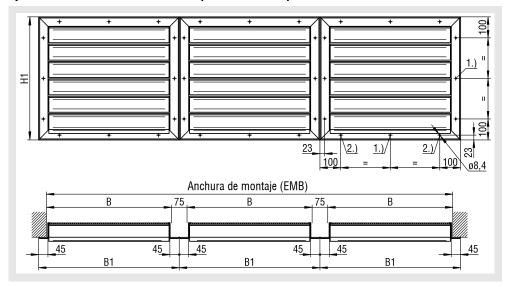
ALAS-Alu


Posiciones de montaje para la ejecución dividida con una altura de > 1 995

Si la altura excede 1995, deben colocarse dos rejillas de toma de aire exterior una encima de la otra.

Altura de montaje (EMH): "EMH=(H1xa)-(2x45)+15" $a = N^{\circ}$ de rejillas

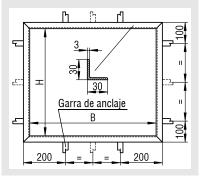
con una anchura de > 2 000


Si la anchura excede 2000, deben colocarse dos rejillas de toma de aire exterior una al lado de la otra.

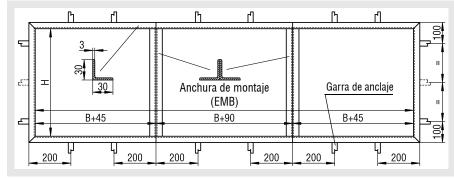
Anchura de montaje (EMB): "EMB=(B1xa)-(2x45)+15" $a = N^{\circ}$ de rejillas

08/01 - 4 Fecha: 05.03.2021

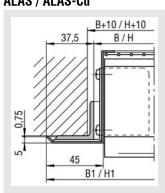
Ejecución en línea continua con disposición de las perforaciones

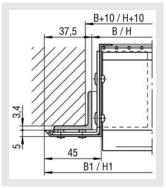

La ilustración muestra la rejilla de toma de aire exterior y retorno según la ejecución en línea continua. De este modo puede colocarse cualquier número de rejillas en una línea. Si las rejillas de toma de aire exterior se colocan en una línea, hay que tener en cuenta las dilataciones en el montaje.

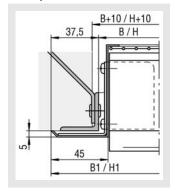
Bajo pedido se suministra un marco de montaje de perfil angular de acero 30/30/3 imprimado con precio adicional.

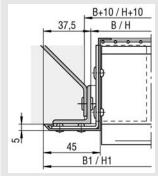

- 3 agujeros de fijación por lado a partir de una altura o anchura de ≥ 1 600
- 2.) Perforaciones adicionales a partir de una anchura de ≥ 900

Accesorios - Dimensiones


Marco de montaje (-ER)


Marco de montaje para ejecución en línea continua


Montaje en la pared ALAS / ALAS-Cu



ALAS-Alu

Montaje dentro de la pared (argamasa) ALAS / ALAS-Cu ALAS-Alu

Nº de garras de anclaje para marco de montaje

Altura: $H \le 1000 = 2$ garras de anclaje en cada lado

1 000 < H \leq 2 000 = 3 garras de anclaje en cada lado

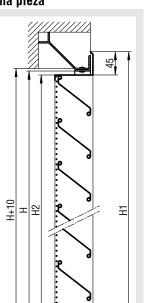
Anchura: $B \le 800 = \text{Ninguna garra de anclaje}$

 $800 < B \leq 1~000 = 2~garras$ de anclaje en cada lado

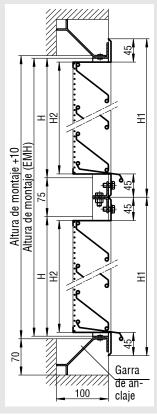
 $1000 < B \le 2000 = 3$ garras de anclaje en cada lado

Si el marco de montaje se envía de antemano, se suministra sin perforaciones.

En caso de la ejecución dividida, el atornillado del marco de montaje es a cargo del cliente.


08/01 - 5

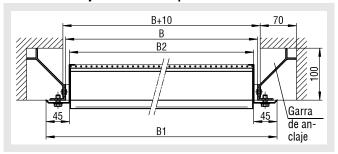
Fecha: 05.03.2021



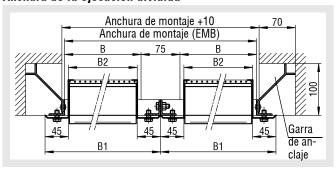
Detalle de montaje de ALAS con marco de montaje

Altura de la ejecución en una pieza

Altura de la ejecución dividida

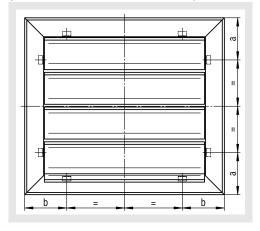

Anchura de la ejecución en una pieza

100


Garra

de an-

claje

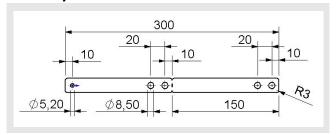


Anchura de la ejecución dividida

Bridas de fijación

(no desmontables desde el exterior)

Cantidad de bridas de fijación

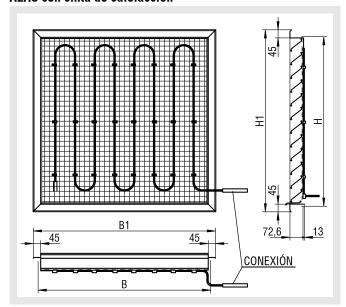

Altura:

 $H \le 800 \Rightarrow a=100 \Rightarrow 2$ bridas de fijación en cada lado $800 < H \le 1\ 100 \Rightarrow a=140 \Rightarrow 2$ bridas de fijación en cada lado $1\ 100 < H \le 1\ 800 \Rightarrow a=230 \Rightarrow 2$ bridas de fijación en cada lado $1\ 800 < H \le 2\ 000 \Rightarrow a=230 \Rightarrow 3$ bridas de fijación en cada lado

Anchura:

 $B \le 900 \Rightarrow b=--- \Rightarrow$ Ninguna brida de fijación $900 < B \le 1200 \Rightarrow b=140 \Rightarrow 2$ bridas de fijación en cada lado $1200 < B \le 1800 \Rightarrow b=230 \Rightarrow 2$ bridas de fijación en cada lado $1800 < B \le 2000 \Rightarrow b=230 \Rightarrow 3$ bridas de fijación en cada lado

Brida de fijación individual


Detalle de montaje de la brida de fijación

08/01 - 6 Fecha: 05.03.2021

ALAS con cinta de calefacción

Por cada m² aprox. 10 m de cinta de calefacción

Medidas de protección para ALAS con cinta de calefacción

- Protección contra tensiones de contacto muy altas: Interruptor automático diferencial, corriente de la falla nominal 30 mA (según VDE 0100/5.73 § 13)
- 2. Protección contra sobretensión atmosférica: (según VDE 0100/5.73 § 18 y las "Disposiciones generales de protección pararrayos", ABB, edición 68 § 8)
 - a) Con pararrayos según VDE 0675/5.72
 - b) Adicionalmente recomendamos conectar la calefacción a través de un conector. En la temporada de las perturbaciones atmosféricas (p. ej. tormentas), separar el sistema de la red. Colgar el conector con cable de conexión flexible a una distancia de mín. 2 m de la toma de corriente.

Conexión de la cinta de calefacción

- a) ¡La conexión eléctrica debe hacerla un electricista especializado observando todas las medidas de protección!
- b) Tener en cuenta los siguientes reglamentos y disposiciones:
 - Directivas de VDE (asociación alemana de tecnologías électricas, electrónicas y de información)
 - Disposiciones de la empresa distribuidora de energía local.

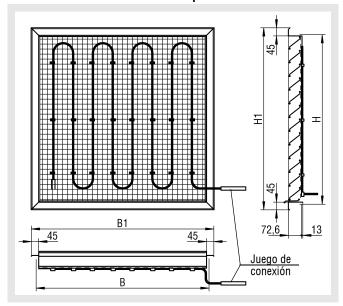
Información técnica sobre la cinta de calefacción Construcción

- 1. Conductor de cobre multifilar de 1,2 mm²
- 2. Elemento de calentamiento semiconductor y autorregulador
- 3. Aislamiento eléctrico de poliolefina modificada de 0.7 mm
- 4. Trenzado de cordones de cobre galvanizados
- 5. Envoltura externa de poliolefina modificada

Seguridad térmica de clase 0 según VDE 0721 parte 2 E § 10

Datos técnicos

Tensión nomina	230 V	
Potencia nomina	al	
- agua helada:	a 0°C	36 W/m
- aire:	a 0°C	18 W/m
Máx. resistencia	$0,0152~\Omega/m$	
Temperatura am	nbiente máx. admisible	
- conectado		+ 65 C°
- desconectado)	+ 85 C°


Nota

- El trenzado de la cinta de calefacción debe conectarse al conductor de protección.
- Utilizar un interruptor automático diferencial.
- Si se utiliza encima de alguna parte metálica, hay que tomar las mismas medidas de protección para este.
- Es imprescindible garantizar las medidas de protección contra contactos indirectos.
- La conexión no debe estar soldada.
- Las cintas de calefacción vienen montadas de fábrica.

08/01 - 7 Fecha: 05.03.2021

ALAS con cinta de calefacción "Top"

Por cada m² aprox. 10 m de cinta de calefacción

Medidas de protección para ALAS con cinta de calefacción "Top"

- Protección contra tensiones de contacto muy altas: Interruptor automático diferencial, corriente de la falla nominal 30 mA (según VDE 0100/5.73 § 13)
- 2. Protección contra sobretensión atmosférica: (según VDE 0100/5.73 § 18 y las "Disposiciones generales de protección pararrayos", ABB, edición 68 § 8)
 - a) Con pararrayos según VDE 0675/5.72
 - b) Adicionalmente recomendamos conectar la calefacción a través de un conector. En la temporada de las perturbaciones atmosféricas (p. ej. tormentas), separar el sistema de la red. Colgar el conector con cable de conexión flexible a una distancia de mín. 2 m de la toma de corriente.

Conexión de la cinta de calefacción

- a) ¡La conexión eléctrica debe hacerla un electricista especializado observando todas las medidas de protección!
- b) Tener en cuenta los siguientes reglamentos y disposiciones:
 - Directivas de VDE (asociación alemana de tecnologías électricas, electrónicas y de información)
 - Disposiciones de la empresa distribuidora de energía local.

Información técnica sobre la cinta de calefacción "Top" Construcción

- 1. Conductor de cobre multifilar de 1,4 mm²
- 2. Elemento de calentamiento semiconductor y autorregulador
- 3. Aislamiento de fluoropolímero
- 4. Trenzado de cordones de cobre galvanizados
- 5. Envoltura externa de fluoropolímero

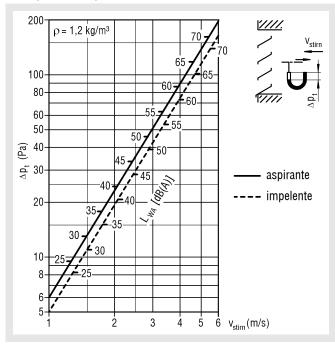
Clasificación de temperatura T4 según la norma europea EN 50014.

Datos técnicos

Tensión nominal	230 V
Potencia nominal	
- aire: a 10°C	64 W/m
Máx. resistencia del trenzado	$0.01~\Omega/m$
máx. temperatura de uso (permanentemente co- nectado)	+ 110 C°

Nota

- El trenzado de la cinta de calefacción debe conectarse al conductor de protección.
- Utilizar un interruptor automático diferencial.
- Si se utiliza encima de metal, hay que tomar las mismas medidas de protección para este.
- Es imprescindible garantizar las medidas de protección y la protección contra contacto al montar.
- Las cintas de calefacción vienen montadas de fábrica.


08/01 - 8 Fecha: 05.03.2021

Datos técnicos

Pérdida de carga y potencia sonora

ALAS / ALAS-Cu / ALAS-Alu

Corrección de superficies

F	(m²)	0,5	1	1,5	2	2,5	3	4
KF	[dB(A)]	-3	0	+2	+3	+4	+5	+6

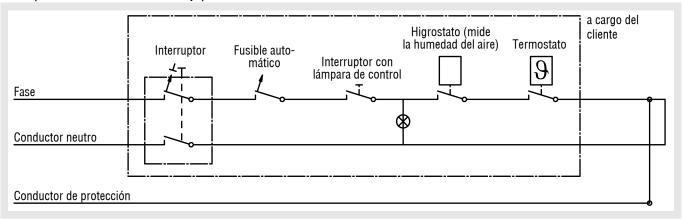
Factor de corrección con tela metálica antimosquitos (MW=1,45 mm, D=0,5 mm) en relación a 1 m^2

·		•				
v _{stirn} (m/s)	0,5	1,0	1,5	2,0	2,5	3,0
KF (dB(A))	+ 4	+ 6	+ 8	+ 10	+ 12	+ 14
KF (Pa)	+ 8	+ 10	+ 14	+ 18	+ 22	+ 28

Sección libre en m²

			В								
		400	600	800	1000	1200	1400	1600	1800	2000	
	345	0,0578	0,0878	0,1178	0,1478	0,1778	0,2078	0,2378	0,2678	0,2978	
Н	510	0,0963	0,1463	0,1963	0,2463	0,2963	0,3463	0,3963	0,4463	0,4963	
	675	0,1348	0,2048	0,2748	0,3448	0,4148	0,4848	0,5548	0,6248	0,6948	
	840	0,1733	0,2633	0,3533	0,4433	0,5333	0,6233	0,7133	0,8033	0,8933	
	1005	0,2118	0,3218	0,4318	0,5418	0,6518	0,7618	0,8718	0,9818	1,0918	
	1170	0,2503	0,3803	0,5103	0,6403	0,7703	0,9003	1,0303	1,1603	1,2903	
	1335	0,2888	0,4388	0,5888	0,7388	0,8888	1,0388	1,1888	1,3388	1,4888	
	1500	0,3273	0,4973	0,6673	0,8373	1,0073	1,1773	1,3473	1,5173	1,6873	
	1665	0,3658	0,5558	0,7458	0,9358	1,1258	1,3158	1,5058	1,6958	1,8885	
	1830	0,4043	0,6143	0,8243	1,0343	1,2443	1,4543	1,6643	1,8743	2,0843	
	1995	0,4428	0,6728	0,9028	1,1328	1,3628	1,5928	1,8228	2,0528	2,2828	
										FQ (m²)	

Sección libre para ejecución en línea continua en m²


	Н										
	345	510	675	840	1005	1170	1335	1500	1665	1830	1995
FQ (m ²)	0,1478	0,2463	0,3448	0,4433	0,5418	0,6403	0,7388	0,8373	0,9358	1,0343	1,1328
KF (-)	0,0065	0,0108	0,0152	0,0195	0,0238	0,0280	0,0324	0,0367	0,0410	0,0454	0,0495

 $FQ_{cinta} = FQ - (KF \times n^{\circ})$ de puentes intermedios)

Esquema eléctrico

ALAS (con cinta de calefacción) ALAS (con cinta de calefacción "Top")

¡Bajo pedido es posible suministrar un armario de distribución completamente cableado!

Leyenda

B (mm) = Anchura H (mm) = Altura

 Δp_t (Pa) = Pérdida de carga

L_{WA} [dB(A)] = Nivel de potencia acústica ponderado en A, re-

ferido a 1 m² ($L_{WA} = (L_{WA} / m^2) + KF$)

v_{stirn} (m/s) = Velocidad de impulsión referida a (H - 80) x B

F (m²) = Sección transversal referida a (H - 80) x B

KF (m) = Factor de corrección para superficies

KF (-) = Factor de corrección
FQ (m²) = Sección libre por metro
MW (mm) = Anchura de la tela metálica
D (mm) = Diámetro de la tela metálica

 ρ (kg/m³) = Densidad

Textos de especificación

Rejilla de toma de aire exterior y retorno con lamas fijas y vierteaguas con rejilla de tela metálica montada detrás.

- Marco y lamas de chapa de acero galvanizado, con rejilla de tela metálica de acero galvanizado.

Marca: SCHAKO modelo ALAS

Marco y lamas de aluminio natural o de color natural anodizado (E6/EV1), con rejilla de tela metálica de acero galvanizado.

Marca: SCHAKO modelo ALAS-Alu

 Marco y lamas de cobre con rejilla de tela metálica de acero inoxidable 1.4301 (V2A).

Marca: SCHAKO modelo ALAS-Cu

Accesorios:

- Marco de montaje perforado (-ER) de perfil angular de acero imprimado 30/30/3 (no perfilado si se suministra de antemano)
- Cinta de calefacción de plástico, autorreguladora
- Cinta de calefacción "Top" de plástico, autorreguladora

08/01 - 10 Fecha: 05.03.2021